Reg. No.

Question Paper Code: 71859

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Sixth Semester

Mechanical Engineering

ME 2351/ME 64/10122 ME 602 - GAS DYNAMICS AND JET PROPULSION

(Regulation 2008/2010)

(Common to PTME 2351/10122 ME 602 – Gas Dynamics and Jet Propulsion for B.E. (Part-Time) Fifth Semester – Mechanical Engineering – Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

(Use of Gas Tables is permitted)

Answer ALL questions.

PART A $-(10 \times 2 = 20 \text{ marks})$

- 1. What is meant by gas dynamics?
- 2. Define Mach number.
- 3. What is meant by stagnation pressure?
- 4. What is 'Fanno flow'?
- 5. What is Oblique shock?
- 6. What is prandtl-meyer relation?
- 7. Define Propulsive efficiency.
- 8. What is the type of compressor used in turbo jet?
- 9. What is monopropellant?

11.	(a)	An air craft flies at a velocity of 700 kmph in an atmosphere where the pressure is 75kPa and temperature is 5°C. Calculate the Mach number and stagnation properties.
		Or
	(b)	Air expands isentropically through the convergent nozzle from constant inlet conditions $P_0 = 4\mathrm{bar},\ T_0 = 550\mathrm{K}$. Exit area of nozzle is $1000\mathrm{cm}^2$. Determine the exit velocity and mass flow rate for the following two cases at exit.
		(i) M=1
		(ii) $M = 0.85$.
12.	(a)	The stagnation temperature of air is raised from 85°C to 376°C in a heat exchanger. If the inlet Mach number is 0.4, determine the final Mach number and percentage drop in pressure.
		Or CO
	(b)	Air at P ₀ = 11 bar, T ₀ = 420 K enters at 45 mm diameter pipe at a Mach
		number of 3 and the friction co-efficient for the pipe surface is 0.001. If the Mach number at exit is 0.8. Determine (i) Masslow rate (ii) Length of the pipe.
3.	(a)	A Jet of air at 270K and 0.7 bar has an initial mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock.
		(i) Mach number
		(ii) Pressure
		(iii) Temperature
		(iv) Speed of sound
		(v) Jet Velocity
		(vi) Density.
		Or
	(b)	A gas at a pressure of 340m bar, temperature of 355K and entry Mach number of 1.4 is expanded isentropically to 140m bar. Calculate the following:
		(i) Deflection angle

(ii)

(iii)

Final Mach number

Final temperature of the gas. Take $\gamma = 1.3$.

Explain with neat sketches the principle of operation of (i) Turbofan 14. engine and (ii) Turbojet engine. Or An aircraft propeller flies at a speed of 440 kmph. The diameter of the (b) propeller is 4.1m and the speed ratio is 0.8. The ambient conditions of air at the flight altitude are $T = 255 \,\mathrm{K}$ and P = 0.55 bar. Find the following: Thrust (i) (ii) Thrust Power (iii) Propulsive efficiency. List the main components of Liquid Propellant Rocket Engine and 15. explain. Or A rocket engine has the following data: (b) = 1200 m/sEffective jet velocity = 0.82Flight to jet speed ratio = 3.4 kg/sOxidizer flow rate = 1.2 kg/sFuel flow rate = 2520 kJ/kg.Heat of reaction per kg of the exhaust gases Calculate the following: Thrust

(i)

(ii)

(iii)

(iv)

(v)

Specific impulse

Propulsive efficiency

Thermal efficiency

Overall efficiency.