Question Paper Code: 71382

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Fourth Semester

Computer Science and Engineering

CS 2254/ CS 45/ CS 1253/ 080250012/ 10144 CS 405 — OPERATING SYSTEMS

(Common to Information Technology)

(Regulation 2008 / 2010)

(Common to PTCS 2254/ 10144 CS 405 - Operating Systems for B.E. (Part-Time) Fourth Semester - CSE - Regulation 2009 / 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 x 2 = 20 marks)

- 1. List the main differences between operating systems for mainframe computers and PCs.
- 2. What are the five major activities of an operating system in regard to file management?
- Define preemption and non-preemption.
- 4. Give the necessary conditions for deadlock to occur.
- 5. Assume a paging system with paged table stored in memory. If a memory reference takes 200 nanoseconds, how long does a paged memory reference take?
- 6. Define thrashing.
- 7. What is meant by mounting? Give its advantage.
- 8. How disk free space can be managed using bit vectors? Give an example.
- 9. State three advantages of placing functionality in a device controller, rather in the kernel.
- 10. Differentiate blocking I/O and unblocking I/O.

11	. (a)	(i)	Explain the purpose examples.	ose and impor		(8)
		(ii)	Give a brief note	on storage stru	icture.	(8)
		(11)		Or		
	(b)	(i)	What are the com	ponents of pro	cess control block? E	xplain. (8)
	(b)	(ii)	Discuss the ste	ps involved	in process creation	n and process (8)
12.	(a)	Consider the following set of processes, with the length of the CPU – burst time given in milliseconds. (16)				
			Process	Burst		7
			P1	10		
			P2	1		
			Р3	2	CA	
			P4	5	9	
		(i)	using FCFS, SJF techniques.	and Round R	the execution of the obin (with quantum	= 1) Scheduling
		(ii)	Find the turn ar	ound time an	d waiting time of ea	ch process using
				Or		
	(b)	(i)	Explain dining p a solution for it.	hilosopher's s	synchronization prob	olem and propose (8)
		(ii)		niques used to	prevent deadlock.	(8)
13.	(a)					structuring page (16)
			9	Or		
	(b)	Explain the different page replacement algorithms with neat examples. (16				
14.	(a)	(i)	Explain file syste	em along with	its different compo	nents. (8)
	(ii) Discuss the commonly used					
		(11)		Or		
					Now with the min	h most dis-
	(b)	Expl	ain the differention their advanta	t file alloca ges and disac	tion methods wit dvantages.	h neat diagrams (16

(b) (i) Write a brief note on RAID systems.

(8)

(ii) Compare and contrast free space management and swap space management. (8)