Question Paper Code: 51448

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Fifth Semester

Aeronautical Engineering

EE 2365/EE 58/AE 1304/080180023/10122 AE 505 - CONTROL ENGINEERING

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

(Semi log sheet and Graph sheet should be provided)

Answer ALL questions.

PART A - (10 × 2 = 20 marks)

 Fill up the table with respect to analogous quantities in Torque-current analogy.

Parameter	Mechanical rotational system	Electrical system
Mass		
Velocity		

- Give the mathematical expression representing the system dynamics of a hydraulic system.
- 3. Give the expression for Mason's gain formula.
- 4. Give the reduced form of the following block diagram.

Figure 1 (a)

Figure 1 (b)

Name the following standard test signals.

- Define steady state error.
- Give the expression for finding the 'centroid' in the construction of root locus.
- List any two advantages of frequency response analysis over the time domain analysis.
- 9. Give the mathematical expression for the output of a digital PID controller.
- 10. List any two advantages of digital controller.

PART B - (5 x 16 = 80 marks)

- 11. (a) (i) Explain in detail, with the help of a neat block diagram, the automatic flight landing system. (10)
 - (ii) From the fundamentals, derive the expression for the transfer function of a thermal system. (6)
 - (b) (i) Give the pictorial representation and the corresponding mathematical expressions for the three translatory elements and the three rotational elements of a mechanical system. (6)
 - (ii) For the mechanical system shown in Figure 3, draw the electrical networks for
 - (1) Force-voltage analogy and
 - (2) Fore-current analogy. (5+5)

Figure 3

(a) (i) For the signal flow graph shown in the Figure 4, find the transfer function using Mason's gain formula.

Figure 4

- (ii) Define the following with respect to signal flow graph.
 - (1) Forward path
 - (2) Loop
 - Non-touching loop.

Or

(b) (i) For the block diagram show in the Figure 5, find the transfer function using block diagram reduction technique.

Figure 5

- (ii) Draw the signal flow graph for the block diagram shown in Figure 4. (6)
- (a) (i) Derive an expression for time response of a second order, under damped, unity feedback system when excited with an unit step input.
 - (ii) Also derive the expression for peak time, rise time and peak overshoot. (10+6)

Or

