Question Paper Code: 21028

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Fifth Semester

Aeronautical Engineering

AE 2303/AE 53/ AE 1303/10122 AE 503 - AERODYNAMICS - II

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Use of gas tables permitted.

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Define compressibility.
- 2. What do you mean by overexpanded nozzle and what is its effect?
- 3. What is the importance of Hugoniot relation?
- Why Mach number behind a normal shock cannot be supersonic? Obtain the limiting value of it.
- Differentiate between like reflection and unlike reflection.
- 6. What is meant by shock polar?
- 7. State the importance of Rayleigh supersonic Pitot formula.
- 8. Define wave drag.
- Define lower and upper critical Mach numbers.
- 10. What is the need for sweep back in supersonic vehicles?

- (a) (i) Show that heat is a path function and not a property. (5)
 (ii) A stationary mass of gas is compressed without friction from an initial state of 0.3 m³ and 0.105 MPa to a final state of 0.15 m³ and 0.105 MPa, the pressure remaining constant during the process. There is a transfer of 37.6 kJ of heat from the gas during the process. How much does the internal energy of the gas change? (6)
 (iii) Show that energy is a property of a system. (5)
 Or
 (b) (i) A reversible heat engine operates between two reservoirs at
 - (b) (i) A reversible heat engine operates between two reservoirs at temperatures of 600°C and 40°C. The engine drives a reversible refrigerator which operates between reservoirs at temperature of 40°C and -20°C. The heat transfer to the heat engine is 2000 kJ and the net work output of the combined engine refrigerator plant is 360 kJ.
 - Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40°C.
 - (2) Reconsider (1) given that the efficiency of the heat engine and the COP of the refrigerator are each 40% of their maximum possible values. (10)
 - (ii) Give the Clausius' statement of the second law and establish the equivalence of Kelvin-Planck and Clausius statements.(6)
- 12. (a) An engine working on the Otto cycle is supplied with air at 0.1 MPa, 35°C. The compression ratio is 8. Heat supplied is 2100 kJ/kg. Calculate the maximum pressure and temperature of the cycle, the cycle efficiency, and the mean effective pressure. (Take for air c_p = 1.005 kJ/kg K, c_v = 0.718 kJ/kg K and R = 0.287 kJ/kg K).

Or

- (b) (i) Show that the efficiency of the Brayton cycle depends only on the pressure ratio. (8)
 - (ii) For the same compression ratio and heat rejection, which cycle is most efficient:
 - Otto, Diesel or Dual? Explain with p v and T s diagrams. (8)
- (a) (i) Describe a simple ideal Rankine cycle with a schematic diagram.
 Explain the processes involved by T-S diagram.
 - (ii) A Steam power plant operates between a boiler pressure of 4 MPa and 300°C and a condenser pressure of 50 kPa. Determine the thermal efficiency of the cycle assuming the cycle to be a simple ideal Rankine cycle.
 (8)

Or

2

21018

- (a) (i) Based on small perturbation theory, derive the linearized velocity potential equation for compressible flows. (10)
 - (ii) Based on the above equation, establish the Prandtl-Glauert rule. (6)

Or

- (b) Consider a subsonic flow with an upstream Mach number of M_{∞} . This flow moves over a wavy wall with a contour given by $y_W = h\cos(2\pi/l)$, where y_W , where y_W is the ordinate of the wall, h is the amplitude, and l is the wavelength. Assume that h is small. Using small perturbation theory, derive an equation for the velocity potential and the surface pressure coefficient.
- 15. (a) Consider an infinitely thin flat plate at a 5° angle of attack in a Mach 2.6 freestream. Calculate the lift and drag coefficients using shock expansion theory.

Or

- (b) (i) Make use of sketches and plots to explain,
 - (1) Shock wave-boundary layer interaction increases drag.
 - (2) The effects of thickness, camber and aspect ratio of wings. $(2 \times 4 = 8)$
 - (ii) Explain the transonic area rule.

(8)