Question Paper Code: 91030

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fifth Semester

Aeronautical Engineering

AE 2302/AE 52/AE 1302/10122 AE 502 — AIRCRAFT STRUCTURES — II

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART $\Lambda - (10 \times 2 = 20 \text{ marks})$

- 1. State the importance of shear center.
- 2. What is the difference between symmetric and unsymmetric bending?
- 3. What is shear flow?
- 4. A multi-cell structure subject to pure torque is statically indeterminate. Why?
- Define Shear center and Elastic axis.
- Write the expression for shear flow in a single cell tube under torque.
- Derive the buckling equation for a thin plate.
- Define crippling strength.
- List out the various structural elements within an aircraft wing with their functions.
- 10. What is a Wagner beam?

PART B
$$-$$
 (5 × 16 = 80 marks)

11. (a) Find the bending stress distribution in a thin walled Z section whose thickness is t, height h, flange width h/2 and subjected to a positive bending moment Mx.

Or

- (b) Derive and obtain an expression for the bending stress in an unsymmetrical section subjected to bending using 'neutral axis' method.
- 12. (a) Plot the shear flow distribution and find the shear centre for the section below. Thickness = 2 mm.

- (b) (i) Derive an expression for shear flow of an open tube of arbitrary cross section subjected to shear loads Sx and Sy without twist. (11)
 - (ii) Modify the above expression for a closed tube. (5)
- 13. (a) Find the shear flow in all the webs of the closed single cell shown in fig. under a vertical load of 5000 N. Area of each boom is 4 cm².

(b) Find the shear flow and twist per unit length of the two cell tube made of aluminium as shown in figure and subjected to a torque 75000 Ncm.

 (a) Explain the Needham's and Gerard's methods of determining crippling stresses. Derive appropriate equation.

Or

- (b) (i) Differentiate between buckling and crippling and explain any one method to determine crippling strength. (8)
 - (ii) Explain the pure tension field and semi tension field beam analysis and bring out their differences.
- (a) (i) Draw the shear force and bending moment diagram for a typical semi cantilever wing.
 - (ii) Explain the effect of non parallel flanges in a beam with suitable examples.
 (8)

Or

- (b) (i) What are the various loads that an aircraft fuselage and wings are subject to? (4)
 - (ii) What is V-n Diagram? Explain how will you plot v-n diagram for a passenger aircraft with the help of necessary equations. Also explain the importance of v-n diagram in aircraft structural design.

 (12)